Structural integrity of centromeric chromatin and faithful chromosome segregation requires Pat1.
نویسندگان
چکیده
The kinetochore (centromeric DNA and associated protein complex) is essential for faithful chromosome segregation and maintenance of genome stability. Here we report that an evolutionarily conserved protein Pat1 is a structural component of Saccharomyces cerevisiae kinetochore and associates with centromeres in a NDC10-dependent manner. Consistent with a role for Pat1 in kinetochore structure and function, a deletion of PAT1 results in delay in sister chromatid separation, errors in chromosome segregation, and defects in structural integrity of centromeric chromatin. Pat1 is involved in topological regulation of minichromosomes as altered patterns of DNA supercoiling were observed in pat1Δ cells. Studies with pat1 alleles uncovered an evolutionarily conserved region within the central domain of Pat1 that is required for its association with centromeres, sister chromatid separation, and faithful chromosome segregation. Taken together, our data have uncovered a novel role for Pat1 in maintaining the structural integrity of centromeric chromatin to facilitate faithful chromosome segregation and proper kinetochore function.
منابع مشابه
Centromeric Barrier Disruption Leads to Mitotic Defects in Schizosaccharomyces pombe
Centromeres are cis-acting chromosomal domains that direct kinetochore formation, enabling faithful chromosome segregation and preserving genome stability. The centromeres of most eukaryotic organisms are structurally complex, composed of nonoverlapping, structurally and functionally distinct chromatin subdomains, including the specialized core chromatin that underlies the kinetochore and peric...
متن کاملPat1 protects centromere-specific histone H3 variant Cse4 from Psh1-mediated ubiquitination
Evolutionarily conserved histone H3 variant Cse4 and its homologues are essential components of specialized centromere (CEN)-specific nucleosomes and serve as an epigenetic mark for CEN identity and propagation. Cse4 is a critical determinant for the structure and function of the kinetochore and is required to ensure faithful chromosome segregation. The kinetochore protein Pat1 regulates the le...
متن کاملIntegrity of the human centromere DNA repeats is protected by CENP-A, CENP-C, and CENP-T.
Centromeres are highly specialized chromatin domains that enable chromosome segregation and orchestrate faithful cell division. Human centromeres are composed of tandem arrays of α-satellite DNA, which spans up to several megabases. Little is known about the mechanisms that maintain integrity of the long arrays of α-satellite DNA repeats. Here, we monitored centromeric repeat stability in human...
متن کاملA Heterochromatin Barrier Partitions the Fission Yeast Centromere into Discrete Chromatin Domains
BACKGROUND Centromeres are cis-acting chromosomal domains that direct kinetochore formation, enabling faithful chromosome segregation. Centromeric regions of higher eukaryotes are structurally complex, consisting of various epigenetically modified chromatin types including specialized chromatin at the kinetochore itself, pericentromeric heterochromatin, and flanking euchromatin. Although the fe...
متن کاملPolo kinase Cdc5 associates with centromeres to facilitate the removal of centromeric cohesin during mitosis
Sister chromatid cohesion is essential for tension-sensing mechanisms that monitor bipolar attachment of replicated chromatids in metaphase. Cohesion is mediated by the association of cohesins along the length of sister chromatid arms. In contrast, centromeric cohesin generates intrastrand cohesion and sister centromeres, while highly cohesin enriched, are separated by >800 nm at metaphase in y...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Genetics
دوره 195 2 شماره
صفحات -
تاریخ انتشار 2013